

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2023

Industrial IT and Automation

Development and Testing of ASTERIX
Category 240 Radar Display

Eivind Knudsen

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Course: FMH606 Master's Thesis, 2023

Title: Development and Testing of ASTERIX Category 240 Radar Display

Number of pages: 59

Keywords: Marine Radar Display, ASTERIX Category 240, Julia, Scan conversion, Plan
Position Indicator

Student: Eivind Knudsen

Supervisor: Hans-Petter Halvorsen

External partner: Sea Surveillance AS a part of Seabrokers Group

Summary:

The primary objective of this master’s thesis is to design, develop, and evaluate an open-
source radar display application that effectively processes and visualizes network data in
compliance with the EUROCONTROLs ASTERIX Category 240 standard. This project
aims to provide a user-friendly and versatile tool for researchers, developers and maritime
professionals to analyse and interpret radar data with ease.

 Preface

3

Preface
This thesis has been prepared as the final part of the study program Master of Science in
Industrial IT and Automation at the University of South-Eastern Norway at Porsgrunn. The
thesis task was “Development and Testing of ASTERIX category 240 Radar Display”.
I would like to express my gratitude to Sea Surveillance and Seabrokers Group for their
support and permission to undertake this project. I am appreciative of the guidance, insights
and constructive feedback provided by my project supervisor from USN, Mr. Hans-Petter
Halvorsen.

Bergen, 15.05.2023
Eivind Knudsen

 Contents

4

Contents

1 Introduction ... 8

1.1 Background ... 8
1.2 Sea Surveillance AS ... 9
1.3 Objective .. 9
1.4 Report Structure ... 9

2 Fundamentals of Maritime Radar Technology ... 10

2.1 Historical Development of Radar Technology ... 10
2.2 Basic Radar Principles ... 11
2.3 Components of a Radar System ... 13
2.4 Types of Radar Systems .. 15
2.5 Radar Displays .. 17
2.6 Performance Parameters and Limitations of Radar Systems .. 18

3 Radar Video Distribution .. 20

3.1 Traditional Methods .. 20
3.2 ASTERIX CAT240 Standard ... 21
3.3 Ethernet Multicast ... 24

4 Software Tools .. 26

4.1 Julia Programming Language and Frameworks ... 26
4.2 Visual Studio Code – Code Editor ... 27
4.3 Pluto – Reactive Notebook .. 28
4.4 Wireshark – Network Packet Analyzer.. 29
4.5 Colasoft Packet Player – Network Packet Player .. 30

5 Requirements and Design .. 31

5.1 Application Requirements ... 31
5.2 Design .. 32

6 Hardware Configuration ... 34

6.1 Data Collection .. 35
6.2 Hardware details ... 35

7 Software Development ... 36

7.1 Agile Software Development ... 36
7.2 Data from Radar .. 37
7.3 Decode CAT240 Data .. 38
7.4 Testing During Development ... 40
7.5 Logging .. 41
7.6 Naming Convention and Style Guide .. 42
7.7 Source Control .. 42
7.8 Performance .. 42
7.9 Deployment ... 43
7.10 PPI .. 43

8 CAT240 Radar Display Application ... 45

8.1 General ... 45
8.2 Configuration .. 45

 Contents

5

8.3 A-scope .. 45
8.4 B-scope .. 46
8.5 PPI .. 48

9 Discussion ... 51

10 Further Work ... 52

11 Conclusion .. 53

References ... 54

Appendices .. 56

 Abbreviations

6

Abbreviations
Abbreviation Definition

ASTERIX All Purpose Structured EUROCONTROL Surveillance
Information Exchange, standard for exchange of information.

Azimuth Angle of antenna in horizontal plane relative to north

CW Continuous Wave

ECDIS Electronic Chart Display and Information System

EM Wave Electromagnetic Wave

FMCW Frequency Modulated Continuous Wave

FRN Field Reference Number

FSPEC Field Specification

IP Internet Protocol

LAN Local Area Network

LSB Least Significant Bit

NM Nautical Mile, unit of distance (1852 meters)

Octet A set of 8-bits containing information, single or multiple of which
are used in constructing a data item as defined in ASTERIX [1]

OSI model Open Systems Interconnection model [2]

Packet A UDP datagram containing binary data

PPI Plan Position Indicator, is a type of radar display

PRF Pulse repetition frequency, is the number of pulses of a repeating
signal in a specific time unit.

RCS Radar cross section, is a measure of how detectable an object is by
radar

 Abbreviations

7

Abbreviation Definition

REPL Read-Eval-Print Loop, allows quick and easy evaluation of Julia
statements

RF Radio frequency

SAC System Area Code, assigned to a geographical area [1]

SIC System Identification Code, assigned to system [1]

TCP Transmission Control Protocol

UDP User Datagram Protocol

UTC Coordinated Universal Time

 1 Introduction

8

1 Introduction
In this project, a high-resolution commercial marine radar supplied by Sea Surveillance AS is
utilized to obtain real-time radar data in the CAT240 format via Ethernet. An open-source radar
display application has been developed as a cost-effective solution for monitoring and analysis
purposes. This application offers an accessible alternative for users seeking to effectively manage
and evaluate radar data without incurring the expenses associated with proprietary software. A
simplified system diagram is depicted in Figure 1.1.

Rotating Marine
Radar

LAN

CAT-240 Display
(A-Scope, B-Scope, PPI)

Ethernet

Ethernet

PC 1 (Client)

CAT-240 Display
(A-Scope, B-Scope, PPI)

PC n (Client)

Ethernet

Figure 1.1: A radar-based system where CAT240 video data is directly output to an Ethernet network. The radar

sensor collects and processes raw data, converting it into CAT240 video format. The data is then transmitted
through the Ethernet interface for real-time analysis or display on a standard PC running the application

developed in this project.

1.1 Background

Marine radar is an indispensable tool for navigation, ensuring the safety of life at sea and
efficient maritime operations. Traditionally, radar systems relied on analog interfaces for
video output or proprietary digital signals. In recent years, however, the EUROCONTROL
Specification for Surveillance Data Exchange ASTERIX Category 240 Radar Video
Transmission standard has emerged [1] [3], streamlining the encoding and exchange of radar
video data across various systems via ethernet. This standard has been widely adopted by
numerous radar manufacturers, enhancing interoperability and data sharing capabilities
among different maritime stakeholders.

A standard marine scanning radar emits pulses radially from a rotating transmit/receive
antenna. In order to display a radar image on a screen, the original radar video data from the
sensor must be acquired and undergo a scan conversion process, which transforms the polar
coordinates into rectangular coordinates. With the growing adoption of the open ASTERIX
Category 240 standard, many commercially available radars now output the radar video
signal in compliance with this standard. Specialized surveillance data processing software to
decode the CAT240 data and scan convert the images are available on the market, however,
there are currently no open-source display solutions available.

 1 Introduction

9

1.2 Sea Surveillance AS

Sea Surveillance AS is a software and high-end solutions company located in Bergen,
Norway. It provides turnkey solutions for the maritime and offshore industries.
Sea Surveillance AS is a part of Seabrokers Group, a Norway-based company with a strong
presence in the maritime and offshore industries. The group has been in operation for more
than four decades, demonstrating a robust and consistent growth throughout its history.

1.3 Objective

The main objective of this master’s thesis is the development and evaluation of a PC-based
marine radar display application that complies with the previously mentioned CAT240
standard. The application is designed to receive, process, and display radar video data from a
variety of sources, such as shipborne radars and coastal radar stations, serving as a valuable
tool for troubleshooting and testing radar video output.

Notably, the developed application will be open source, providing unrestricted access to the
code for use, modification, and distribution. Considering the current lack of open-source
marine radar display applications conforming to the CAT240 standard, this project aims to
deliver a cost-free resource for diagnosing and testing CAT240 radar video output, while
promoting adaptability and innovation through its open-source nature.

1.4 Report Structure

Chapter 2 provides the fundamentals of maritime radar technology.

Chapter 3 introduces the various methods of distributing radar video.

Chapter 4 offers an overview of the key software tools utilized and the selected programming
language, explaining the reasoning behind the selection of programming language.

Chapter 5 provides the requirements and design of the project.

Chapter 6 gives an overview of the hardware configuration.

Chapter 7 provides insights into the software development process.

Chapter 8 offers a summary of the CAT240 Video Display Application that has been
developed.

Chapter 9 discusses the project outcomes.

Chapter 10 suggest opportunities for further enhancements and developments.

Chapter 11 presents a conclusion, addressing the project’s objectives and goals.

 2 Fundamentals of Maritime Radar Technology

10

2 Fundamentals of Maritime Radar
Technology

This chapter provides an overview of the fundamentals of radar technology, covering its
historical development, basic principles, key components, and various types of radar systems.
Additionally, it introduces the different radar display types and discusses the performance
parameters and limitations of radar systems in the maritime context. This background
information will help readers gain a solid understanding of radar technology and its
significance in the development of a PC-based marine radar display application compliant
with the CAT240 standard.

2.1 Historical Development of Radar Technology

The history of radar technology has been marked by continuous innovations and
advancements, particularly in the context of maritime applications. This sub-chapter
highlights the key milestones in the development of maritime radar technology [4], from its
early beginnings during World War II to the sophisticated systems in use today.

2.1.1 Early Beginnings: World War II and Shipborne Radar Systems

During World War II, the first shipborne radar systems were developed to provide naval
forces with improved navigation and target detection capabilities. These early systems played
a crucial role in enhancing situational awareness at sea and increasing the effectiveness of
naval operations.

2.1.2 Post-War Era: Emergence of Commercial Marine Radar

Following the end of the war, radar technology was adapted for civilian maritime
applications, leading to the development of commercial marine radar systems. These systems
were designed to enable safer navigation and collision avoidance for commercial shipping,
improving overall maritime safety and efficiency. Automatic Radar Plotting Aid, also known
as ARPA radars, emerged in the 1960s, substantially reducing the need for manual
calculations and enhancing situational awareness for mariners.

2.1.3 Modern Marine Radar Systems

Over the past few decades, marine radar technology has continued to evolve, incorporating
various advancements that have further improved its performance and functionality. Some
notable developments include:

• Digital signal processing: The introduction of digital signal processing in marine radar
systems has led to enhanced target detection, tracking, and discrimination capabilities.

 2 Fundamentals of Maritime Radar Technology

11

• Advanced display technology: Modern marine radar displays, such as the plan
position indicator, have greatly improved the presentation and interpretation of radar
data, providing navigators with more accurate and actionable information.

• Multifunction radar systems: The development of multifunction radar systems has
allowed for the integration of various data sources, such as GPS, AIS, and electronic
chart systems, enabling more comprehensive and informed decision-making for
maritime operators.

2.2 Basic Radar Principles

Radar, an acronym derived from the term radio detection and ranging, embodies its primary
function. Radar systems operate based on a set of fundamental principles that allow for the
detection, processing, and display of information about surrounding objects. This sub-chapter
provides a concise overview of the basic radar principles, including the radar range equation,
the Doppler effect, and target resolution.

2.2.1 Echo Principle

Radars employs the echo principle in detecting objects or targets by transmitting a radio
energy pulse and receiving a portion of the reflected energy, known as an echo. This process
is similar to the reflection of sound waves off geographical features. Essential aspects to bear
in mind include [4]:

• Echoes are never as loud as the original pulse.
• The likelihood of detecting an echo depends on the energy and duration of the

transmitted pulse.
• To identify nearby targets, short pulses are required to prevent the echo from being

obscured by the transmitted pulse.
• A sufficiently long interval between transmitted pulses allows time for distant echoes

to return.
While the sound analogy is useful, it has limitations due to differences in the character and
behavior of radio and sound waves, such as radio waves' much higher speed. The time
between the transmission of a pulse and the reception of its corresponding echo depends on
the pulse's speed and the distance it has traveled. By knowing the pulse speed and measuring
the elapsed time, the target's range can be calculated. For radar ranging, radio waves travel
approximately at the speed of light, 300.000 kilometers per second. This value enables a
simple relationship between target range and elapsed time for pulse transmission and echo
reception as given by Equation (2.1).

𝑅 =
𝑐𝑡

2
 (2.1)

Where:

• R [m] is the range between the radar and the target.
• c = 299 792 458 [m/s] and is the speed of light in vacuum.

 2 Fundamentals of Maritime Radar Technology

12

• t [s] is the round-trip time duration it takes for the radar signal to travel from the
transmitter to the target and back to the receiver.

2.2.2 Radar Range

The radar range equation is a fundamental equation used to estimate the maximum range at
which a radar system can detect a target. The equation relates the power transmitted by the
radar, the antenna gain, the target's radar cross-section, the sensitivity of the receiver, and
other factors to determine the detection range. The radar range equation is given by Equation
(2.2):

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟λ2

(4𝜋)3𝑅4
 (2.2)

Where:

• 𝑃𝑟 [W] is the received power by the radar.
• 𝑃𝑡 [W] is the transmitted power.
• 𝐺𝑡 is the gain of transmit antenna (unitless).
• 𝐺𝑟 is the gain of receive antenna (unitless).
• λ [m] is the wavelength of the carrier.
• [m2] is the mean RCS of the target.
• R [m] is the range from radar to target.

The equation assumes that the radar system operates under ideal conditions, and actual
performance may vary due to factors such as environmental conditions, interference, and
system limitations.

2.2.3 Pulse Repetition Frequency and Pulse Repetition Interval

Pulse repetition frequency refers to the number of pulses transmitted per second by the radar
system. Pulse repetition interval is the time interval between successive pulses [5]. PRF and
PRI are essential parameters that influence the radar system's maximum unambiguous range
and velocity measurement capabilities.

2.2.4 Doppler Effect

The Doppler effect is a phenomenon that occurs when there is relative motion between a
radar system and a target. As the radar waves reflect off the moving target, their frequency
changes [5]. This frequency shift can be used to determine the target's radial velocity and is
the basis for Doppler radar systems, which can detect and track moving objects more
effectively.

 2 Fundamentals of Maritime Radar Technology

13

2.2.5 Target Resolution

Target resolution refers to the ability of a radar system to distinguish between two closely
spaced targets [4]. There are two types of target resolution: range resolution and angular
resolution.

Range resolution: Range resolution depends on the radar pulse width and the bandwidth of
the transmitted signal. A shorter pulse width or a larger bandwidth result in better range
resolution, enabling the radar to separate closely spaced targets in range.

Angular resolution: Angular resolution depends on the antenna's beamwidth. A narrower
beamwidth leads to better angular resolution, allowing the radar system to differentiate
between closely spaced targets in azimuth or elevation.

2.3 Components of a Radar System

Radar systems consist of several key components that work together to detect and display
information about surrounding objects. This sub-chapter provides an overview of the primary
components found in a radar system, including the transmitter, antenna, receiver, signal
processing and display unit. The radar antenna emits a microwave signal, which is then
reflected and picked up by a receiving device. The electrical signal picked up by the receiving
antenna is called echo signal or return. The radar signal is generated by a powerful transmitter
and received by a highly sensitive receiver. The operating principle of a radar system is
illustrated in Figure 2.1.

Figure 2.1: The block diagram illustrates the operating principle of a radar system. The transmit path is

represented by dark blue boxes, while the receive path is depicted by light blue boxes.

 2 Fundamentals of Maritime Radar Technology

14

2.3.1 Transmitter

The transmitter is responsible for generating and amplifying the radar signal [4]. It produces
high-frequency electromagnetic waves, which are then directed towards the target using the
antenna. The power and frequency of the transmitted signal determine the radar system's
range and resolution capabilities.

2.3.2 Duplexer

In radar systems using a single antenna for both transmission and receiving signals, a device
is needed to prevent the direct transmission of RF energy from the transmitter to the receiver
[4]. Two common devices used for this purpose are the duplexer and the circulator. A
duplexer is an electronic switch that alternates the antenna connection between the transmitter
and the receiver. A circulator is a passive, non-reciprocal device that allows RF signals to
pass through in one direction while isolating the other ports. In a radar system, it directs the
transmitted signal from the transmitter to the antenna and then directs the received signal
from the antenna to the receiver, effectively separating the transmit and receive paths.

2.3.3 Antenna

The antenna plays a dual role in a radar system, transmitting the electromagnetic waves
generated by the transmitter and receiving the reflected signals from the target. Antennas
come in various designs and configurations, with their shape and size influencing the radar's
beamwidth, gain, and directivity.

2.3.4 Receiver

The receiver's primary function is to detect and process the radar echoes or reflected signals
from the target. It amplifies the weak signals received by the antenna, filters out noise, and
converts the analog signals into digital data for further processing by the display unit.

2.3.5 Display

The signal processing and display unit is responsible for analyzing and interpreting the radar
data. It applies various algorithms to the digital data received from the receiver to extract
meaningful information, such as target range, bearing, and velocity. The processed data is
then displayed on the radar screen, providing the operator with a visual representation of the
surrounding environment.

 2 Fundamentals of Maritime Radar Technology

15

2.4 Types of Radar Systems

Marine radar systems are essential tools for navigation, collision avoidance, and maintaining
situational awareness at sea. Several types of radar systems have been developed for marine
applications, each with specific advantages and use cases [6]. This sub-chapter provides an
overview of three primary types of marine radar systems. The difference in transmitted signal
is depicted in Figure 2.2.

Figure 2.2: The functional principles of different radar types are outlined schematically. A Pulsed radar

calculates the range based on the round-trip time of a single pulse (first row). The Continuous Wave (CW) radar
assesses velocity by analyzing the Doppler frequency shift (second row). Finally, the Frequency Modulated

Continuous Wave (FMCW) radar (third row) examines the frequency disparity between transmitted and
received signals, providing both velocity and range data.

2.4.1 Pulse Radar

Pulse radar is the most common type of marine radar system. It works by transmitting short
pulses of radio waves and measuring the time it takes for the echoes to return after reflecting
off targets. Pulse radar systems provide excellent range resolution and are highly effective in
detecting and tracking targets at varying distances.

• X-Band Radar: X-band radar systems operate at a frequency range of 8 to 12 GHz and
are known for their high-resolution imagery and relatively short range. They are well-

 2 Fundamentals of Maritime Radar Technology

16

suited for navigating in congested waterways and detecting small targets, such as
buoys and other vessels.

• S-Band Radar: S-band radar systems operate at a frequency range of 2 to 4 GHz,
offering longer range capabilities compared to X-band radars. They are less affected
by rain and other environmental factors, making them suitable for open-sea navigation
and long-range target detection.

2.4.2 Continuous Wave Radar

Continuous Wave radar systems transmit a continuous signal at a constant frequency, rather
than short pulses, and measure the frequency shift (Doppler effect) of the returning echoes to
determine the target's radial velocity but cannot measure the range. Plain CW radar systems
are employed in applications like police radar guns, where the primary focus is on measuring
the target’s velocity rather than determining its range.

2.4.3 Frequency Modulated Continuous Wave Radar

Frequency Modulated Continuous Wave radar systems, also known as chirp radars, transmit a
continuous wave signal with a frequency that changes over time. By analyzing the difference
in frequency between the transmitted and received signals, FMCW radars can determine both
the range and radial velocity of targets. FMCW radar systems are often used for short-range
navigation, docking, and collision avoidance due to their high-resolution capabilities and
relatively low power requirements.

 2 Fundamentals of Maritime Radar Technology

17

2.5 Radar Displays

Radar displays play a vital role in presenting the information gathered by radar systems in a
visually intuitive and interpretable manner. This sub-chapter provides an overview of the
primary types of radar displays illustrated in Figure 2.3, with a focus on their use in maritime
applications.

(a)

(b)

(c)

(d)

Figure 2.3: Illustration of four common radar display types:
(a) PPI; (b) A-Scope; (c) B-Scope; (d) ECDIS.

2.5.1 Plan Position Indicator Display

The Plan Position Indicator display is the most commonly used radar display in maritime
applications. It presents radar data in a top-down, two-dimensional view, with the radar's own
position at the center of the display [7]. The PPI display allows navigators to see the range
and bearing of targets relative to their vessel, enabling accurate navigation and collision
avoidance.

 2 Fundamentals of Maritime Radar Technology

18

2.5.2 A-Scope Display

The A-Scope display is a one-dimensional radar display that shows the received signal
strength as a function of range. In maritime applications, A-Scope displays can be used to
analyze radar echoes and assess target characteristics, such as distance and signal strength
[7]. However, the A-Scope display does not provide bearing information, limiting its
usefulness for navigation purposes.

2.5.3 B-Scope Display

The B-Scope display, also known as the Range-Azimuth display, is a two-dimensional radar
display that shows target information in terms of range and azimuth [7]. The B-Scope display
is similar to the PPI display but presents the data in a rectangular grid instead of a polar
coordinate system. The horizontal axis typically corresponds to the azimuth, and the vertical
axis indicates the range, the B-Scope display is less frequently utilized because the PPI
display offers a more user-friendly approach to evaluating target locations and motion.

2.5.4 Electronic Chart Display and Information System

Electronic Chart Display and Information System is a computer-based system that integrates
radar data, electronic navigational charts, and other data sources, such as GPS and AIS.
ECDIS provides a comprehensive and dynamic representation of the vessel's surroundings,
enhancing situational awareness and navigational capabilities [7]. In many modern maritime
applications, ECDIS is integrated with radar displays, allowing for seamless data fusion and
interpretation.

2.6 Performance Parameters and Limitations of Radar Systems

Understanding the performance parameters and limitations of radar systems is essential for
maximizing their effectiveness in maritime applications. This sub-chapter provides an
overview of the key performance parameters and the inherent limitations of radar systems in
marine environments [4].

2.6.1 Performance Parameters

Several crucial performance parameters for radar systems include the following:

• Range is the maximum distance at which a radar system can reliably detect targets.
Factors affecting radar range include transmitted power, antenna gain, target size,
mounting height, line of sight and sensitivity of the receiver.

• Resolution refers to the radar's ability to distinguish between closely spaced targets.
Two types of resolution are essential in marine applications: range resolution and
azimuth resolution. Range resolution depends on the pulse width and signal
bandwidth, while azimuth resolution depends on the antenna beamwidth.

 2 Fundamentals of Maritime Radar Technology

19

• Accuracy is the measure of how closely the radar system can determine the target's
true position, velocity, and other parameters. In maritime applications, accuracy is
crucial for navigation and collision avoidance.

• Detection Probability is the likelihood that a radar system will detect a target of a
given size, shape, and composition at a specific range. Factors affecting detection
probability include target size, radar cross-section, and system noise.

2.6.2 Limitations of Radar Systems

Constraints affecting radar systems encompass:

• Radar Clutter refers to unwanted echoes from non-target objects, such as sea waves,
rain, snow, ice and landmasses. In maritime applications, clutter can mask target
echoes and reduce the radar's detection capability.

• Multipath Propagation occurs when radar signals are reflected off the sea surface or
other obstacles, causing multiple signal paths to reach the radar receiver. This
phenomenon can result in ghost targets and distorted target positions.

• Doppler Ambiguity arises in continuous-wave radar systems when the target's radial
velocity is incorrectly estimated due to the limited frequency resolution of the system.
This limitation can lead to incorrect target tracking and positioning.

• Radio Frequency Interference occurs when other radio frequency sources, such as
other radar systems or communication devices, interfere with the radar's operation.
Radio frequency interference can degrade radar performance and cause false targets
or loss of target detection.

 3 Radar Video Distribution

20

3 Radar Video Distribution

This chapter examines radar video distribution, highlighting the traditional methods, the use
of the ASTERIX CAT240 standard, and Ethernet multicast technology. The benefits and
limitations of each approach will be explored, along with their practical applications in the
maritime industry. Some of the key benefits of CAT240 radar, with respect to the requisite
hardware, are illustrated in Figure 3.1.

Traditional Radar
Specialized

Splitting Hardware

Specialized Display
Hardware

Coax + Signal

Coax +
Signal

Display 1

Coax +
Signal

Specialized Display
Hardware

Display n

CAT240 Radar
Standard LAN

Equipment

Standard PC

Ethernet

Ethernet

Display 1

Ethernet Standard PC

Display n

Figure 3.1: Overview of the specialized hardware necessary for a traditional radar system at the top, while
demonstrating the utilization of commercially available off-the-shelf cables, switches, and PCs for a CAT240

radar at the bottom.

3.1 Traditional Methods

Traditional radar video distribution methods involve the use of analog signals transmitted
over coaxial cables. These methods have been widely used in the maritime industry for
several decades. However, they come with several limitations, including signal degradation,
limited scalability, and the need for dedicated cables and hardware. An example of such a
setup using a VisionMaster FT radar and specialized hardware from Sperry Marine is shown
in Figure 3.2.

 3 Radar Video Distribution

21

VisionMaster FT
Rotating Radar

Video/ Coax cable

Slave Junction
Box

VisionMaster FT
Radar DisplaySignals/ 4 pair cable

Signals/ 4 pair cable

Video/ Coax cable

Signals/ 4 pair cable

Video/ Coax cable

VisionMaster FT
Radar Display

Figure 3.2: An example of a hardware configuration featuring a VisionMaster FT marine radar, a device known
as a slave junction box that serves as a splitter, and two connected displays, all provided by Sperry Marine. To

maintain simplicity, the power cables have not been included in the representation.

Advantages of traditional methods:

• Simplicity: Analog video distribution is relatively straightforward, involving minimal
setup and configuration.

• Compatibility: Many legacy radar systems still rely on analog video distribution,
making it a viable option for certain applications.

Disadvantages of traditional methods:

• Signal degradation: Analog signals are susceptible to noise and interference, resulting
in a decline in video quality over long distances.

• Limited scalability: Expanding the system with additional radar sources or displays
requires the installation of more cables and hardware, which can be expensive and
cumbersome.

3.2 ASTERIX CAT240 Standard

Since being specified as a standard in 2009, numerous radar manufacturers have chosen
ASTERIX CAT240 as their preferred network video standard. Major brands such as Furuno,
Simrad, Terma and Sperry Marine all deliver radars that feature CAT240 output. This
compatibility enables the radar video to be processed by any display applications supporting
this format. Using a computer-based software application, it is possible to interface directly
with the radar through commercial off the shelf Ethernet components for video reception,
eliminating the need for costly specialized hardware to distribute or split the signal from the
radar. An example of such a setup using a VisionMaster Net radar from Sperry Marine
together with COTS network components is shown in Figure 3.3.

 3 Radar Video Distribution

22

COTS Gigabit
Switch

CAT240 Display

CAT240 Display

VisionMaster Net
Rotating Radar

Ethernet

Ethernet

Ethernet

Figure 3.3: Hardware configuration of the system showing two computers connected, each running the CAT240

display application. However, any number of computers can be connected.

CAT240 standard streamlines the exchange of radar video between a data source and one or
more destinations. The video data is in polar format, comprising a sequence of radar returns
at varying angles, each containing a set of samples representing the radar video at increasing
range. For instance, a radar with 1.8kHz pulse repetition frequency, and a range digitized into
8192 samples for each pulse results in a CAT240 stream with 1800 messages per second,
where each message encodes 8192 samples of video data, using high definition this give
approximately 130Mbps.

Each radar return, as defined by the CAT240 standard, consists of a header and a data block.
The header contains information such as the angle represented by the block, radar video
range, time of day, and more. A single video segment is included in each ASTERIX Video
Message as depicted in Figure 3.4. A sector can be composed of either a single or multiple
segments, depending on the number of cells representing the range for that sector. It is worth
mentioning that the starting range for a sector, i.e., the turning unit, is not necessarily required
to be from 0. ASTERIX defines that the Radar Video must always be stabilized relative to
North.

 3 Radar Video Distribution

23

Total
Radar
Sweep

Video
Sector

Video
Segment

Secto
r

End
 A

ziu
m

uth

Figure 3.4: Illustration of a Video Sector and a Video Segment.

To obtain the range in meters for a cell within the data stream, Equation (3.1) should be
utilized.

𝑟𝑎𝑛𝑔𝑒 =
(𝑐(𝑐𝑒𝑙𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)(𝑠𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒 + 𝑐𝑒𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 1))

2
 (3.1)

Where c = 299 792 458 m/s is the speed of light in vacuum.

The ASTERIX specification focuses on the Presentation and Application layers (layers six
and seven) as outlined by the Open Systems Interconnection Reference Model Standard [4].
The CAT240 standard establishes a unified format for exchanging radar data within the
maritime domain, fostering interoperability among various systems and platforms. This
standardized approach enables the efficient transmission and sharing of radar video data
across diverse networks.

Advantages of using ASTERIX CAT240:

• Improved data quality: Digital radar data is less susceptible to noise and interference,
resulting in higher-quality video.

• Scalability: The standard allows for easier integration with other systems and the
addition of new radar sources or displays.

 3 Radar Video Distribution

24

• Interoperability: The use of a common data format ensures compatibility between
various maritime systems and platforms.

Disadvantages of using ASTERIX CAT240:

• Compatibility issues: Some legacy radar systems may not support the ASTERIX
CAT240 standard, requiring upgrades or modifications.

3.3 Ethernet Multicast

The ASTERIX Specification does not cover the lower telecommunication support layers
(OSI model layers one to five). Transmission of surveillance information encoded with
ASTERIX can be achieved through any suitable communication medium, such as packet-
switched Wide Area Networks or Local Area Networks. Ethernet multicast, a network
technology enabling efficient distribution of radar video data to multiple recipients at once as
depicted in Figure 3.5, employs UDP multicast to alleviate network congestion and improve
overall system performance.

Radar PC1 PC2 PC3

Unicast Unicast Unicast Unicast

Radar PC1 PC2 PC3

Multicast Multicast Multicast Multicast

Figure 3.5: The fundamental distinction between unicast and multicast communication: The top section of the
figure demonstrates unicast, featuring separate one-to-one data transmissions between individual sender-receiver
pairs. The lower section showcases multicast, with a single sender efficiently transmitting data simultaneously

to multiple receivers through optimized network infrastructure.

Advantages of using Ethernet multicast:

• Efficiency: Ethernet multicast conserves network bandwidth by sending data to
multiple recipients simultaneously, reducing network congestion.

• Scalability: The technology can accommodate large numbers of radar sources and
displays without significant impact on network performance.

 3 Radar Video Distribution

25

• Flexibility: Ethernet multicast can be easily integrated with existing network
infrastructure and other communication systems.

Disadvantages of using Ethernet multicast:

• Complexity: The setup and configuration of Ethernet multicast can be more complex
than traditional analog video distribution methods.

• Security concerns: The multicast nature of the data transmission may expose the radar
video data to unauthorized recipients if proper security measures are not implemented.

3.3.1 Network Load Calculations

The calculations below estimate the network load when implementing a CAT240 interface.
Note that this primarily considers the video payload's impact, which is by far the most
significant factor. It does not account for all effects of protocol headers or the splitting of
datagrams larger than the Maximum Transmission Unit. The data rate is calculated using
Equation (3.2).

𝑅𝑎𝑡𝑒 =
𝑁𝑝𝐵

106
 (3.2)

Where:

• Rate is the data per time unit [MB/s]
• N is the number of video cells (unitless)
• P is the Pulse repetition Frequency [Hz]
• B is the size of video cell in bytes [B]

Assuming a network bandwidth of 125 MB/s for Gigabit Ethernet, Equation (3.3) can be
applied to determine the network load. Table 3.1 presents some sample values calculated
using Equations (3.2) and (3.3).

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐿𝑜𝑎𝑑 =
𝑅𝑎𝑡𝑒

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
100% (3.3)

Table 3.1: Video Message Network Load Calculations

Video
Message

Frequency [Hz]

Video
Cells per

Sector

Video
Resoluti
on [bits]

Bytes per
Video
Cell

Number
of IP Packets

required

Rate
[MB/s]

Network
Load
[%]

785 1024 4 0.5 1 0.40 0.32
1800 1024 4 0.5 1 0.92 0.74
785 8192 8 1 6 6.43 5.14

1800 8192 8 1 6 14.75 11.80
3000 8192 16 2 11 49.15 39.32
5000 1024 16 2 2 10.24 8.19

 4 Software Tools

26

4 Software Tools
This chapter presents an overview of the essential software tools employed in the
development of the application, elucidating not only their main functionalities but also the
underlying reasoning for their selection. Through an exploration of the importance and
capabilities of these tools, valuable insights into their contributions to the successful
execution of the project are provided. Table 4.1 provides a summary of the main software
tools employed in this project, with detailed descriptions of the first five in subsequent
subchapters.

Table 4.1: Overview of main software tools used in this project.

Name Description

Julia High-performance, dynamic, modern programming language.

Visual Studio Code Versatile, extensible code editor platform.

Pluto Interactive, reactive Julia programming environment.

Wireshark Powerful network protocol analyser tool.

Colasoft Packet Player A network packet player enables the replay of captured
Wireshark files onto a LAN.

Microsoft Project Comprehensive project management software solution.

Visio Versatile diagramming and vector graphics application.

4.1 Julia Programming Language and Frameworks

Julia was chosen as the primary programming language for the development of the CAT240
radar video processing application due to its performance-oriented design and ease of use [8].
Its syntax is similar to MATLAB and Python, making it easy to learn for users who are
familiar with these languages. Julia is a high-level dynamic programming language designed
for numerical and scientific computing, with a strong focus on performance. Compared to
MATLAB and Python, Julia has shown to be faster and has a lower memory usage for a
range of tasks such as linear algebra and numerical integration. A general guide as to how
fast Julia is compared to a wider array of languages is found as general benchmarks on Julia’s

own website [9]. Furthermore, upon examining the codebase for NumPy, which is Python's
fundamental library for scientific computing, it becomes apparent that crucial performance-
driven components are implemented in C [10]. This implies that pure Python may not deliver
high performance.

 4 Software Tools

27

The Makie library was selected as the primary GUI library for the signal processing
application due to its advanced graphical capabilities and ease of use. Makie provides an
intuitive interface for creating complex visualizations and has a wide range of tools for data
exploration and analysis. It is also designed to be fast and efficient, which makes it an ideal
choice for developing high-performance GUIs for signal processing applications. [11]

The combination of Julia and Makie enables the development of a CAT240 processing
application that provides advanced data analysis and visualization capabilities while
maintaining high performance and ease of use. The use of Julia and Makie for GUI
development in the CAT240 processing application ensures that users can enjoy both
advanced data analysis and visualization capabilities as well as a high level of performance,
which are essential for the development of a user-friendly and efficient CAT240 processing
application. For example, processing algorithms must be able to deal with the increasing
amount of data generated by modern radars, which can be several gigabytes per minute. The
processing must also be done in real-time to provide timely information to the operator.

One potential disadvantage of using Julia for development is its relatively small user
community compared to more established languages like Python and MATLAB. However,
this drawback is getting smaller every day as an increasing number of developers discover the
benefits of Julia for scientific computing and data analysis.

Additionally, Julia's popularity has been growing rapidly in recent years, and it has been
adopted by major companies and organizations including Cisco, Pfizer, IBM, and NASA are
notable science-driven efforts requiring high performance that are using Julia [12]. As Julia
continues to gain traction in the scientific computing community, its user community is
expected to grow and the availability of resources and support for Julia development will
continue to improve.

Overall, while the smaller user community may have been a potential disadvantage in the
past, the growing popularity of Julia and its increasing adoption by major organizations
suggest that this drawback is becoming less relevant with time.

4.2 Visual Studio Code – Code Editor

Visual Studio Code is a highly popular, lightweight, and versatile code editor developed by
Microsoft. It is designed to support various programming languages and development
frameworks through the use of extensions, which provide additional features and
functionality [13]. With a wide range of features such as syntax highlighting, code
navigation, debugging, and built-in Git support, Visual Studio Code has emerged as a
preferred development environment for many programmers across various platforms.

One such extension for VSCode is the Julia extension, which brings first-class support for the
Julia programming language. This extension offers numerous features that enhance the
overall development experience for Julia users, including syntax highlighting, code
completion, snippets, integrated REPL, linting, and debugging capabilities. Additionally, it

 4 Software Tools

28

provides an environment in which developers can easily manage Julia packages and execute
Julia code within the editor.

By utilizing the Julia extension for Visual Studio Code, developers can streamline their
workflow and take full advantage of the powerful features offered by both the Julia language
and the VSCode editor. This combination provides an optimal environment for creating,
testing, and refining Julia applications, enabling developers to be more productive and
efficient in their programming endeavors.

4.3 Pluto – Reactive Notebook

Pluto is an innovative, open-source notebook environment designed specifically for the Julia
programming language. It provides an interactive and user-friendly platform for writing,
executing, and visualizing Julia code, making it an excellent tool for exploring, prototyping,
and sharing ideas [14].

With their reactive nature, Pluto notebooks provide a unique live-coding experience. Upon
modification of a code cell, the notebook automatically updates and re-evaluates any
dependent cells to ensure the output aligns with the latest changes. This reactive process
promotes rapid iteration and exploration, fostering a deeper understanding of the code and its
underlying concepts.

Pluto notebooks are highly useful for various tasks, including:

1. Data exploration and analysis: Importing, processing, and visualizing data is seamless
with Julia's powerful libraries. This makes Pluto an excellent tool for comprehensive
data analysis and exploration.

2. Experimentation and prototyping: The interactive nature of Pluto notebooks enables
quick testing of ideas, experimentation with diverse approaches, and iteration on code,
thereby accelerating the development process.

3. Educational purposes: The live-coding environment of Pluto is well-suited for
educational settings, promoting a hands-on approach to understanding programming
concepts and algorithms.

4. Documentation and collaboration: Pluto notebooks, being easily shareable, provide a
convenient medium for project collaboration or presentation of research findings,
complete with executable code and visualizations.

In conclusion, Pluto notebooks offer an engaging and intuitive approach to working with
Julia code, fostering creativity, productivity, and collaboration. By leveraging Pluto's unique
features and the power of the Julia language, data exploration, idea testing, and sharing of
work can be achieved more effectively.

 4 Software Tools

29

4.4 Wireshark – Network Packet Analyzer

Wireshark, a free and open-source packet analyzer, serves as a valuable tool for network
troubleshooting and analysis. It can capture packet data directly "from the wire" during an
active network connection and store it in a file [15]. As demonstrated in Figure 4.1, there is a
ASTERIX dissector integrated into the Wireshark package, further enriching its capabilities.

Figure 4.1: A detailed screenshot from Wireshark featuring built in ASTERIX decoder activated, showcasing

the raw hexadecimal values alongside the interpreted information within a Category 240 packet.

 4 Software Tools

30

4.5 Colasoft Packet Player – Network Packet Player

Colasoft Packet Player is a versatile packet replay tool that enables users to open, and
playback network packet trace files captured by various sniffer software, including
Wireshark. In addition to supporting the original interval when transmitting packet files, the
software also allows users to loop the transmission [16]. As illustrated in Figure 4.2, this
application streamlines the reproduction of network packets and enables comprehensive
testing capabilities using pre-existing data.

Figure 4.2: Screenshot of Colasoft Packet Player used to open captured packet trace files from Wireshark and

play them back in the network.

 5 Requirements and Design

31

5 Requirements and Design
This chapter provides a detailed account of the requirements for the application, as well as an
explanation of the design decisions implemented to successfully achieve the objectives of the
task at hand. Figure 5.1 shows a simplified sketch of the data flow pertaining to several key
requirements.

CAT240 Messages Decode Messages
Filter out radar

video

GUI Display
- A-Scope
- B-Scope

- PPI

Figure 5.1: A simple sketch of data flow pertaining several key requirements.

5.1 Application Requirements

The subsequent points list the detailed application requirements for this project:

• Read multicast packets (UDP datagram containing binary data) from the radar via
Ethernet.

• Decode received binary ASTERIX CAT240 packets comprising header and data [3]
[1].

• Present data in a Radar A-scope, comparable to the display of an oscilloscope.
• Present data in a Radar B-scope, a Cartesian diagram that represents a 2-D “top

down” view of space where the x-axis represents the azimuth, and the y-axis
represents the range.

• Present data in a Radar PPI-display (plan position indicator), which is a scan-
converted polar coordinate display with the radar position at the origin.

• The rotating radar available for development and testing purposes in this project has
several options for the output video stream, including a factory-configured detailed
stream running at 1800 pulses per second (PRF = 1,8kHz in short pulse length), and
the radars range is digitized into 8192 samples for each pulse. Then the CAT240
stream represents a set of 1800 messages per second, where each message encodes
8192 samples of video data (approx. 130Mbps). The solution must be capable of
processing and displaying the data live, with high performance/ bandwidth.

• Provide information on the range and bearing.
• Configurable radar video input source and decoding settings.
• Video processing, such as gain, threshold and interpolation.
• Possibility to input a static heading for azimuth offset (rotation) of the display.
• The application shall be open-source, which means that all its dependencies should

also adhere to open-source licensing.

 5 Requirements and Design

32

5.2 Design

Modular software design is a design approach that emphasizes dividing a system into
separate, independent modules based on functionality. Each module represents a specific
operation or a subset of the system's overall functionality.
In modular design, the entire software system is conceptualized as a set of interacting but
self-contained modules. Each module has its own separate and distinct role and is designed to
perform that role in an autonomous manner. The modules interact with each other through
well-defined interfaces and protocols, without needing to know the internal details of how the
other modules work. The main modules in the chosen design are depicted in Figure 5.2.

Receive UDP
Multicast

Decode Binary
ASTERIX CAT240

Data
Process Video

GUI
Radar

B-Scope

GUI
Radar

A-Scope

GUI
Radar

PPI

Config File

Figure 5.2: Modular software design.

The main program begins by retrieving necessary configurations, such as the multicast IP
address and port from the configuration file. Subsequently, a UDP socket is opened to listen
for incoming packets. The received data is decoded and assessed for compliance with the
CAT240 standard. If the data passes validation, it is processed and displayed in the selected
display type. A flow chart of the application is depicted in Figure 5.3. This visual
representation outlines the overall application flow structure.

 5 Requirements and Design

33

Read UDP
Multicast

Success

Start

Yes

Read configuration

Success

Yes

Decode CAT240
Data

Valid Data

Process data

Yes

Update Display

No

Log Error

No

Exit

No

Figure 5.3: Flow chart for the Julia application.

 6 Hardware Configuration

34

6 Hardware Configuration

A high-resolution navigation radar operating at 28 rpm has been employed, generating 1800
CAT240 packets per second when transmitting in short pulse length. Each packet contains
8192 range cells with a resolution of 8 bits. The hardware has been installed according to the
configuration depicted in Figure 6.1.

Switch

CAT240 Display

CAT240 Display

Rotating Radar

Ethernet

Ethernet

Ethernet

Figure 6.1: Hardware configuration of the system showing two computers connected, each running the CAT240

display application. However, any number of computers can be connected.

The radar is strategically positioned near Bergen port with an unobstructed sea view, at a
latitude of 60.39126N and longitude of 5.29285E, as illustrated in Figure 6.2.

Figure 6.2: Picture of the radar utilized to the left, and a map displaying the installation location to the right.

 6 Hardware Configuration

35

6.1 Data Collection

Real-time CAT240 radar data was captured and stored as .pcapng files using the network
protocol analyser, Wireshark. The corresponding files are available from the
'wireshark_packets_dump' directory within the project's GitHub repository. The package
dumps facilitate reproducibility and testing of the display application, as though it were
connected to a live radar, by utilizing tools like Colasoft Package Player to replay the packet
dump files.

6.2 Hardware details

The radar in the test setup employs an 8-foot antenna, and a 25kW X-band transmitter. Table
6.1 outlines the primary specifications for the radar antenna, while Table 6.2 provides
detailed information on the transceiver. Additionally, key characteristics of the receiver can
be found in Table 6.3 [17]. The information presented has been sourced from the
manufacturer’s VM Net Ship’s manual volume 1 provided by Sperry Marine.

Table 6.1: Radar antenna specification, the test setup employs an 8-foot antenna.

Table 6.2: Transmitter specifications, the test setup utilizes a 25kW X-band transmitter.

Table 6.3: Receiver specifications for the receiver used in the test setup.

 7 Software Development

36

7 Software Development
This chapter outlines the methodology employed in constructing the software and highlights
its essential components.

7.1 Agile Software Development

Agile software development is a contemporary approach to building software that emphasizes
adaptability, collaboration, and iterative progress. In contrast to traditional methodologies,
which often follow a rigid and linear process, agile development allows for flexibility and
rapid response to changing requirements and conditions.
Agile software development is based on several key principles that differentiate it from
traditional waterfall methodologies [18]. One such principle is iterative and incremental
development. Agile development is characterized by short, iterative cycles called sprints,
usually lasting between one to four weeks. During each sprint, a functional subset of the
software is developed, tested, and integrated, allowing for rapid feedback and continuous
improvement as depicted in Figure 7.1.

Figure 7.1: Illustration of an agile sprint.

Another important aspect of agile methodologies is adaptability. Agile development
prioritizes responsiveness to changing requirements and conditions. As the project
progresses, adjustments can be made to the development plan based on new information or
shifting priorities, ensuring the final product remains relevant and valuable.

Collaboration is also a cornerstone of agile development. This approach fosters a
collaborative environment where cross-functional teams work closely together, sharing
knowledge and expertise. This close interaction promotes effective communication, shared
understanding, and faster problem-solving. However, this part is not key in a team of one.

 7 Software Development

37

Lastly, customer involvement is a crucial component of agile development. In this process,
customers or stakeholders are actively involved throughout the project, providing input and
feedback at every stage. This ensures that the final product aligns closely with their needs and
expectations.

7.2 Data from Radar

Radar video distribution employs the User Datagram Protocol for transmission. Messages are
sent within UDP/IP packets to the designated IP address and port specified in the radar
settings. Since UDP is not a reliable transport protocol, the receiving implementation should
account for the possibility of out-of-order and missing packets.

When sending UDP packets, there might be instances where a single message needs to be
split and transmitted across multiple packets to adhere to the Maximum Transmission Unit
limits of the network. In cases where jumbo frames are not supported, message frequencies
exceeding 1,092 Hz arriving at Windows PCs may be susceptible to corruption, as detailed in
[1]. It is crucial to thoroughly consider the implications of this issue during system design.

In order to receive data within the application, the Sockets package [19], which is a part of
Julia's standard library, is utilized. This package offers functions to bind to a UDP socket and
read data transmitted over a Local Area Network. By binding the socket to host IP 0.0.0.0 as
shown in Figure 7.2 the socket will listen on the specified port on all available Ethernet
adapters.

function receive_udp(chan::Channel, s::UDPSocket; group::IPv4, port::Integer)

…

ret = Sockets.bind(s, ip"0.0.0.0", port, reuseaddr=true)

…
Figure 7.2: Code snippet, listen on all devices.

 7 Software Development

38

7.3 Decode CAT240 Data

The decode module is responsible for decoding CAT240 data in accordance with the
standard. A messages field specification requires a minimum of one octet and a maximum of
two octets. The presence of a second octet is indicated by the field extension indicator, which
is represented by the least significant bit in the first octet being set to one. Messages are
composed of data items arranged in a sequence determined by the Field Reference Number
FRN data items are transmitted only if the corresponding FSPEC bit is set to one. A flow
chart illustrating the process can be found in Figure 7.3. Additionally, an overview of the
data, including actual example data obtained from a test radar system, is presented in Table
7.1. For more in-depth information it is referred to the standard documentation [1] [3].

Wait for available
data

Available data

Start

No

Read Data
Yes

Valid CAT240

Write error
message

No

Return Decoded
Data

Decode
corresponding FRN

FSPEC LSBFSPEC LSB set
Yes

Decode FSPEC
Yes

FSPEC bit set

Read first/ next
FSPEC bit

Yes

NoNo

No

Yes

Figure 7.3: Decode data module flow chart.

 7 Software Development

39

Table 7.1: Overview of CAT240 video message data items and format, the example data is gathered from the
actual test radar system.

FRN Length
in Octets Data Item Description Format Example Value (Hex)

- 1 Data Category CAT CAT 240 f0
- 2 Length Indicator Total Length in Octets 0 – (216-1) 8238 20 2e

- 1 or 2 Field Specification FSPEC Binary 11100111
10101010 e7 aa

1 1 Data Source
Identifier

SAC 0 – (28-1) 255 ff
1 SIC 0 – (28-1) 0 00

2 1 Message Type Message Type 001/002 2 02

3 4 Video Record
Header Sequence Identifier 0 – (232-1) 1465687 00 16 5d 57

4 1 Video Summary Field Repetition Factor 0 – (28-1)
m Characters in ASCII CHAR

5

2

Video Header Nano

Start Azimuth 0 – (216-1)
2 End Azimuth 0 – (216-1)
4 Start Range 0 – (232-1)
4 Cell Duration [ns] 0 – (232-1)

6

13-14
Video Header

Femto

Start Azimuth 0 – (216-1) 0 E7 60
15-16 End Azimuth 0 – (216-1) 91 00 58
17-20 Start Range 0 – (232-1) 0 00 00 00 00
21-24 Cell Duration [fs] 0 – (232-1) 61783612 03 ae be 3c

7

1 Video Cells
Resolution and

Data Compression
Indicator

Compression Indicator 0/1 0 00

1 Bit Resolution
1,2,3,4,5,6
(1,2,4,8,16,

32 bits)
4 (8bits) 04

8
2 Video Octets and

Video Cell
Counters

Number of Valid Octets
in Video Block 0 – (216-1) 8192 20 00

3 Number of Valid Cells in
Video Block 0 – (224-1) 8192 00 20 00

9 1 Video Block Low
Data Volume

Repetition Factor (n) 0 – (28-1)
4n Video Block 4n Octets

10
1 Video Block

Medium Data
Volume

Repetition Factor (n) 0 – (28-1) 128 80

64n Video Block 64n Octets 0 0 84 …

10 2 3
00 00 54 …

0a 02 03

11 1 Video Block High
Data Volume

Repetition Factor (n) 0 – (28-1)
256n Video Block 256n Octets

12 3 Time of Day 1/128 s Elapsed since
last Midnight as UTC 0 – (224-1) 7644707 74 a6 23

13 1+ Reserved
Expansion Field RE Binary

14

1
Special Purpose

Field

Special Purpose Field
Length 0 – (28-1) 11 0b

q Specific Information
Beyond the Standard Binary -

00 37 9d 84
00 00 00 6d

00 00

 7 Software Development

40

7.4 Testing During Development

Testing is a crucial aspect of software development, as it helps verify that the code functions
as intended and should be conducted regularly throughout the development process.
Identifying and addressing bugs, flaws, and errors early on makes them easier to fix. This
kind of testing is referred to as functional testing.

Moreover, it is imperative to confirm that existing code continues to work correctly after new
modifications are introduced. This form of testing is known as regression testing.

Throughout the rest of this document, the term "testing" will encompass both functional and
regression testing. There are two primary approaches to conducting tests: manual and
automated.

7.4.1 Manual Testing

Manual testing involves interacting with the developed software, a process referred to as
exploratory testing. Developers should frequently engage in this activity, as it is the sole
means of confirming that the software behaves as anticipated. It is also crucial for the end-
user or customer to test the software using real-life scenarios, as their usage patterns may
significantly differ from those of the developer.

7.4.2 Automated Testing

Manual testing can be labour-intensive and may yield inconsistent results due to human error.
Consequently, scripted tests are employed to examine the system's underlying functionality
more reliably. These tests produce consistent results, enabling precise identification of the
failing system component. Automatic tests generally fall into two categories: unit tests and
integration tests [20].

Unit tests evaluate whether a single code component functions as expected. For instance, a
unit test may verify that a specific function returns the correct value or carries out the desired
action. Unit tests typically belong to the "white-box testing" group, in which the code's
internal workings are known to the test writer. In contrast, integration tests evaluate the
compatibility and functionality of various system components. For example, an integration
test might involve reading data through an Ethernet adapter and verifying that the correct
actions are carried out. Integration tests can be classified as either white-box or black-box
tests, with the latter indicating that the test writer is not familiar with the code's internal
workings.

This project utilizes both unit tests and integration tests to ensure comprehensive and reliable
evaluation of the system. A snippet demonstrating some of the automated test results is
shown in Figure 7.4.

 7 Software Development

41

Figure 7.4: The following snippet demonstrates the automated test results generated by running the 'runtests.jl '
file, accessible within the 'test' directory of the project's GitHub repository.

7.5 Logging

File-based logging is implemented using a package called LoggingExtras, which serves as a
convenient wrapper around the Logging module included in Julia's standard library [21]. This
approach allows for tracking the history and progress of computations through a log of
events. Events are generated by incorporating logging statements within the source code.
Example of such statements is showcased in Figure 7.5, and the corresponding output in the
log file is depicted in Figure 7.6.

@warn("Warning: Potential issue detected")

@info("Information: Routine operation")

@error("Error: Critical failure occurred")

@debug("Debug: Diagnostic information")
Figure 7.5: Example of various logging levels to categorize and filter messages based on their severity or

importance during execution.

┌ Warning: 2023-05-09 10:01:29 Warning: Potential issue detected

└ @ Main d:\Source\USN\RadarDisplay\examples\logger\logger_example.jl:3

┌ Info: 2023-05-09 10:01:29 Information: Routine operation

└ @ Main d:\Source\USN\RadarDisplay\examples\logger\logger_example.jl:4

┌ Error: 2023-05-09 10:01:29 Error: Critical failure occurred

└ @ Main d:\Source\USN\RadarDisplay\examples\logger\logger_example.jl:5

┌ Debug: 2023-05-09 10:01:30 Debug: Diagnostic information

└ @ Main d:\Source\USN\RadarDisplay\examples\logger\logger_example.jl:6
Figure 7.6: Example log file output.

These logging statements enable the classification of events according to their severity or
importance, including warnings, informational messages, errors, and debug messages.
Additionally, it contains information about when and where in the code it was executed. This

 7 Software Development

42

structured approach simplifies monitoring and debugging throughout the development
process. Furthermore, the logs can prove to be an invaluable resource post-deployment,
assisting in monitoring the program's status and identifying any potential issues.

7.6 Naming Convention and Style Guide

The official Julia style guide found here [22], offers a comprehensive set of recommendations
to help write clean, readable, and consistent code. Although these guidelines may not be
suitable for every situation, they generally serve as helpful suggestions and an effort to follow
the guidelines has been made. Naming conventions have also been chosen to align with those
used in Julia's base library, ensuring intuitive code for other Julia users.

7.7 Source Control

Source control represents a cornerstone in modern software development practice, as it
preserves the historical record of all changes made to the project files. This functionality
allows for the rollback to a previous version of the code, should errors or issues arise. For this
project, Git is utilized as the source control mechanism, operating in conjunction with the
cloud-based service, GitHub. Given that packet dump files for this project exceed GitHub's
file size limit of 100.00 MB, the Git Large File Storage, also known as Git LFS [23],
extension is employed to manage these larger files. This solution allows the GitHub
repository to contain pointers to these large files, effectively managing their storage and
accessibility.

7.8 Performance

BenchmarkTools.jl [24] is a robust Julia package specifically designed for assessing the
performance of Julia code. Its primary offering is the @benchmark macro, which runs a code
block multiple times and collects detailed statistics about its execution time. This package has
been instrumental in assessing and optimizing the performance of various functions within
the application. Figure 7.7 and Figure 7.8 present an example of the code and its resulting
output. In this context, 'Cat240' is a module and 'Cat240Message' is a struct. By inputting
binary data, the constructor validates if the data conforms to the CAT240 standard and, if
valid, populates the struct fields accordingly.

@benchmark cat240message = Cat240.Cat240Message($binary_data)
Figure 7.7: This code snippet benchmarks the performance of the process for validating and decoding binary

data adhering to the CAT240 standard.

 7 Software Development

43

Figure 7.8: Result of a performance benchmark trial.

To evaluate the computational demands of the developed PPI application, it was tested on a
standard modern computer. Figure 7.9 provides a snapshot of the application's performance
as monitored through the task manager.

Figure 7.9: A snapshot from the task manager, showcasing the PPI application's performance on a modern

computer equipped with an Intel i5-11400 CPU and a GeForce RTX3070 GPU.

7.9 Deployment

To initiate the application, it's a prerequisite to have Julia installed on your computer, with a
minimum required version of 1.8.5. The 'Project.toml' file lists the necessary package
dependencies, which can be conveniently installed using Julia's built-in package manager
with the 'instantiate' command [25]. Additionally, valid CAT240 data must be accessible on
the network, located at the IP address and port detailed in the 'config.JSON' file. Once these
conditions are met, execute any of the three files named after the display type available in the
'display' folder within the GitHub repository.

7.10 PPI

In the radar scan conversion process, the polar coordinates of radar data, represented as
range-azimuth, are transformed into Cartesian coordinates, represented as x-y. The geometric
transformation can be expressed as Equation (4.1) and (4.2).

𝑥𝑖 = 𝑟𝑖 sin𝜃𝑖 (4.1)

𝑦𝑖 = 𝑟𝑖 cos𝜃𝑖 (4.2)

There is not a direct relationship between radar samples and the output image using Cartesian
coordinates, two-dimensional interpolations are required to prevent unwanted visual artifacts,
such as the Moiré patterns illustrated in Figure 7.10.

 7 Software Development

44

Figure 7.10: PPI display without interpolations illustrating the Moiré pattern.

 8 CAT240 Radar Display Application

45

8 CAT240 Radar Display Application
In this chapter, the developed application will be presented, highlighting the user
configuration, various radar displays and processing functions accessible to the user during
operation.

8.1 General

The application has been developed using the Julia programming language. The complete
source code is accessible in the dedicated GitHub repository, which can be found at the
following link: GitHub - USN231216/RadarDisplay.
Visualizations in the application are created using Makie, with GLMakie as the backend.
GLMakie leverages OpenGL to render graphics efficiently, ensuring smooth performance. To
take full advantage of these capabilities, users should have an OpenGL-enabled graphics card
that supports OpenGL version 3.3 or higher.

8.2 Configuration

The application features a JSON configuration file, which enables users to conveniently
modify connection settings and other essential parameters using any text editor. Figure 8.1
displays the available parameters within the configuration file.

{

 "Radar": {

 "Network": {

 "ip_address": "192.168.1.10",

 "port_number": 8080

 },

 "Video": {

 "azimuth_offset": 12.3

 }

 }

}
Figure 8.1: Parameters in the JSON configuration file. Syntax highlighting is provided when using e.g., Visual

Studio Code as text editor.

8.3 A-scope

The A-scope display offers real-time visualization of video blocks found in CAT240
messages, akin to an oscilloscope presentation. Each frame comprises a group of video cells
that correspond to a video radial, as demonstrated in Figure 8.2. Utilizing the sliders
positioned beneath the plot, users can adjust the gain, effectively multiplying all cell
amplitudes by the selected value, and modify the offset, which directly adds to all cell
amplitudes. Additionally, the start azimuth and end azimuth sliders enable users to filter and
display only specific azimuth angles for a more tailored viewing experience.

https://github.com/USN231216/RadarDisplay

 8 CAT240 Radar Display Application

46

Figure 8.2: A-scope showing a group of video cells corresponding to a video radial.

8.4 B-scope

The B-Scope presents an image similar to a Cartesian plot, offering a two-dimensional "top-
down" view of the area. In this representation, the horizontal axis corresponds to the azimuth
measurement, while the vertical axis depicts the range measurement. Signals appear as
distinct bright spots, with their intensity indicated by the colormap on the right side of Figure
8.3. The functionality of the interactive sliders for floor level and ceiling level are
demonstrated in Figure 8.4.

 8 CAT240 Radar Display Application

47

Figure 8.3: B-scope display of the application, with adjustable sliders for interactive parameter settings.

Figure 8.4: B-scope display of the application with zoom. On the left side no floor or ceiling filter are active.
While on the right-side floor and ceiling filters are active as indicated by the slider positions.

 8 CAT240 Radar Display Application

48

8.5 PPI

The live scan converted image can be viewed by employing the Plan Position Indicator, or
PPI, script. The radar's location is at the centre, marked by 0 on both the X and Y axes.

Users can adjust various parameters using corresponding sliders, such as gain, which
amplifies each pixel according to the specified parameter. The floor filter eliminates pixels
with an intensity value below the slider setpoint, while the ceiling filter adjusts pixel values
above the setpoint to the maximum value, represented as 100% or white on the colour bar
located to the right of Figure 8.5. Moreover, an azimuth offset slider is available to rotate the
entire image by applying a rotation matrix multiplication as illustrated in Figure 8.8. The
floor and ceiling filters are showcased in Figure 8.6 and Figure 8.7. Figure 8.9 presents the
radar video manually superimposed on a local area map for a more contextual view.
Furthermore, specifics derived from the decoded CAT240 data are documented in a log file, a
sample is presented in Appendix A.

Figure 8.5: PPI display with sliders below and a colorbar to the right.

 8 CAT240 Radar Display Application

49

Figure 8.6: The left PPI displays the data with no floor or ceiling filters applied. The right image, on the other
hand, shows the result after the application of floor and ceiling filters, as determined by the respective slider

positions.

Figure 8.7: This zoomed-in image features a smaller vessel, with the same filter settings as applied in Figure 8.6.
To highlight the vessel's location, a red square has been manually superimposed.

 8 CAT240 Radar Display Application

50

Figure 8.8: The left image is displayed without any azimuth offset, while the right image demonstrates the
application of a 90-degree counter-clockwise azimuth offset.

Figure 8.9: Radar video manually superimposed on a map of the local area, with adjustments made to the video
colors for enhanced visibility.

 9 Discussion

51

9 Discussion

In this project, the main objective was to create a free open-source tool with a user-friendly
interface to read and display radar video data in the CAT240 format, which arrives binary via
Ethernet UDP multicast. Due to the high amount of data produced by high-resolution radar,
three different high-level programming languages were considered. MATLAB was ruled out
early on due to its licensing cost, and Python emerged as the main option due to its available
libraries. However, the customer's preference for a single-language implementation and the
performance advantages of Julia, mentioned in chapter 4.1, led to the selection of Julia over
Python.

To develop the application, Agile methodologies were used, prioritizing sprint cycles and
continuous user feedback. Although Kanban was initially adopted for organizational
purposes, it was found to provide little value for a solo developer and was used sparingly.
Regular reflection on ways to enhance effectiveness, following the Agile manifesto's 12th
principle, led to the decision to discard Kanban. A Lean's Gantt project plan was used to track
overall progress and remaining tasks.

The end result of the project is a fully functional application that meets the primary goal set
by the requirements and user feedback. The application's main tasks involve reading and
decoding CAT240 data, processing it, and displaying it in various forms of standard radar
displays. User input generates instant visual feedback on a live radar video display.
Additionally, as an open-source software package, the application is designed to be a
foundation for future extensions. The codebase is accessible on GitHub, allowing for future
modifications or improvements.

 10 Further Work

52

10 Further Work
While the current application has successfully addressed the specified requirements and
demonstrated its utility for CAT240 radar testing and analysis, there remain opportunities for
further enhancements and developments. This chapter outlines potential avenues for future
work, which could improve the application's performance, expand its features, and maximize
its impact on the field.

• Performance Optimization: Further optimization of the application's performance
could lead to faster processing times and a more responsive user interface, ensuring a
smoother user experience. Techniques such as parallel processing, caching, and
algorithmic improvements can be explored to achieve these enhancements.

• Improved GUI: The user interface could be further enhanced by incorporating
additional visual elements such as range rings and real-time cursor positioning.
Moreover, transitioning to vector graphics for rendering could eliminate the need for
interpolation and facilitate a lossless visualization of each video cell in the digitized
CAT240 video, thereby offering a more precise and detailed view.

• Additional Data Formats: To increase the application's versatility, support for
additional data formats could be integrated, allowing users to work with various radar
systems and data types seamlessly. This expansion would broaden the application's
appeal and make it more widely applicable in the radar community.

• Advanced Analysis Tools: Incorporating advanced analysis tools and algorithms into
the application could provide users with deeper insights into the radar data. Features
such as automatic target detection, tracking, and classification could be developed to
enable more sophisticated data analysis.

• User Customization: Allowing users to customize the application's interface and
settings to suit their preferences could improve its usability and overall user
satisfaction. Implementing features such as configurable display layouts, colour
schemes, and data visualization options would cater to diverse user needs.

• Integration with External Tools: To further increase the application's utility,
integration with external tools and platforms used in the radar domain could be
considered. This would enable seamless data exchange and collaboration among users
and facilitate a more streamlined workflow.

• User Feedback and Iterative Improvement: Continuous collection of user feedback
and subsequent refinements of the application based on their suggestions would
ensure that it remains relevant and effective in meeting users' evolving needs.

By exploring these avenues for further work, the CAT240 display application can continue to
evolve, providing even greater value to the radar community and fostering ongoing
innovation in the field.

 11 Conclusion

53

11 Conclusion
In this master’s thesis project, a CAT240 display application was created utilizing modern
software development methodologies and tools. The project was carried out in close
cooperation with the external partner, Sea Surveillance AS.
The developed application addresses a difficulty encountered by certain CAT240 radar users,
who often struggle to examine and assess data quality without specialized paid tools. To
mitigate this issue, the application offers a user-friendly interface that enables users to
visualize data through familiar radar displays, such as A-scope, B-scope, and PPI.
Furthermore, the application incorporates readily accessible processing functions via sliders,
delivering instantaneous feedback for enhanced user experience.
The application is designed as an open-source project, promoting adaptability and
extensibility for other developers to modify and enhance its features according to their needs.
The delivered application effectively addresses the stated requirements, and hopefully it will
serve as a valuable tool for CAT240 radar testing and analysis in its current state. Moreover,
it lays a foundation for future enhancements and developments.
The open-source source code for the application can be found at the following link:
GitHub - USN231216/RadarDisplay

https://github.com/USN231216/RadarDisplay

 References

54

References

[1] EUROCONTROL, "Specification for Surveillance Data Exchange Part I," [Online].
Available: https://www.eurocontrol.int/publication/eurocontrol-specification-
surveillance-data-exchange-part-i.

[2] ISO/IEC 7498-1:1994, "Information Processing Systems - OSI Reference Model - The
Basic Model," 2000.

[3] EUROCONTROL, "CAT240 - EUROCONTROL Specification for Surveillance Data
Exchange ASTERIX," [Online]. Available:
https://www.eurocontrol.int/publication/cat240-eurocontrol-specification-surveillance-
data-exchange-asterix.

[4] A. G. Bole and W. O. Dineley, Radar and ARPA Manual, Newnes, 2016.

[5] M. O. Kolawole, Radar Systems, Peak Detection and Tracking, Newnes, 2002.

[6] G. S. Rao, Microwave and Radar Engineering, Pearson India, 2014.

[7] C. Wolff, "Radartutorial.eu," [Online]. Available:
https://www.radartutorial.eu/index.en.html.

[8] A. Edelman, J. Bezanson, S. Karpinski and V. B. Shah, "Julia: A fresh approach to
numerical computing," 2017. [Online]. Available: https://doi.org/10.1137/141000671.

[9] Julialang.org, "Julia Micro-Benchmarks," Julialang.org, [Online]. Available:
https://julialang.org/benchmarks/.

[10] Numpy, "NumPy is the fundamental package for scientific computing with Python.,"
[Online]. Available: https://github.com/numpy/numpy.

[11] S. Danisch and J. Krumbiegel, "Makie.jl: Flexible high-performance data visualization
for Julia," 2021. [Online]. Available: https://doi.org/10.21105/joss.03349.

[12] JuliaHub, "Julia Case Studies," [Online]. Available: https://juliahub.com/case-studies/.

[13] Microsoft, "Visual Studio Code," [Online]. Available: https://code.visualstudio.com/.

[14] "Pluto: Simple, reactive programming environment for Julia," [Online]. Available:
https://plutojl.org/.

[15] "WireShark: Network Analyzer," [Online]. Available: www.wireshark.org.

[16] "Colasoft Packet Player," [Online]. Available:
https://www.colasoft.com/packet_player/.

 References

55

[17] Sperry Marine, VM Net Ship’s Manual, 2020.

[18] A. Cockburn, Agile Software Development: The Cooperative Game, Second Edition,
Addison-Wesley Professional, 2006.

[19] Julia Documentation, "Julia Standard Library - Sockets," [Online]. Available:
https://docs.julialang.org/en/v1/stdlib/Sockets/.

[20] Testim, "Unit Test vs. Integration Test: Tell Them Apart and Use Both.," [Online].
Available: https://www.testim.io/blog/unit-test-vs-integration-test/.

[21] Julia Documentation, "Julia Standard Library - Logging," [Online]. Available:
https://docs.julialang.org/en/v1/stdlib/Logging/.

[22] Julia Documentation, "Style Guide," [Online]. Available:
https://docs.julialang.org/en/v1/manual/style-guide/.

[23] Git Large File Storage, "An open source Git extension for versioning large files,"
[Online]. Available: https://git-lfs.com/.

[24] BenchmarkTools.jl, "BenchmarkTools Manual," [Online]. Available:
https://juliaci.github.io/BenchmarkTools.jl/dev/manual/.

[25] Julia Documentation, "Working with Environment," [Online]. Available:
https://pkgdocs.julialang.org/v1/environments/#Using-someone-else's-project.

 Appendices

56

Appendices

Appendix A Master’s Thesis Description
Appendix B Log File Example

 Appendices

59

Appendix B Log File Example

┌ Info: 2023-05-06 20:23:57 Application started.

└ @ Main ~\RadarDisplay\src\display\a-scope.jl:5

┌ Info: 2023-05-06 20:23:57 receive_udp, thread id:

│ Threads.threadid() = 1

└ @ Main ~\RadarDisplay\src\sockets\receive_udp.jl:4

┌ Info: 2023-05-06 20:23:57

│ First received message decoded successfully as ASTERIX

│ cat: 240

│ len: 8238

│ fspec: 59306 (bit representation: 1110011110101010)

│ sac: 255

│ sic: 0

│ msgtype: 2 (VideoMessage)

│ msgindex: 105842118

│ start_az: 3.0311 rad (173.6719 deg)

│ end_az: 3.0327 rad (173.7598 deg)

│ start_rg: 0

│ cell_dur: 61783612

│ c: 0 (No compression applied)

│ res: 4 (High Resolution - 8 bits)

│ nb_vb: 8192

│ nb_cells: 8192

│ rep: 128

│ Length videocells: 8192

│ time_of_day [s]: 33525.3

│ special_purpose_length:11 bytes (including this byte)

│ special_purpose_field: UInt8[0x00, 0x0f, 0xa4, 0x9a, 0x00, 0x00, 0x00, 0x6d,

0x00, 0x00]

└ @ Main ~\RadarDisplay\src\display\a-scope.jl:73

┌ Info: 2023-05-06 20:23:57

│ FRN - Item types included in first received message:

│ 1 - Data Source Id

│ 2 - Message Type

│ 3 - Video Record Header

│ 6 - Video Header Femto

│ 7 - Video Cells Resolution & Data Compression

│ FX - Field Extension indicator

│ 8 - Video Octets & Video Cells Counters

│ 10 - Video Block Medium Data Volume

│ 12 - Time of Day

│ 14 - Special Purpose Field

└ @ Main ~\RadarDisplay\src\display\a-scope.jl:74

	USN Master's Thesis
	1 Introduction
	1.1 Background
	1.2 Sea Surveillance AS
	1.3 Objective
	1.4 Report Structure

	2 Fundamentals of Maritime Radar Technology
	2.1 Historical Development of Radar Technology
	2.1.1 Early Beginnings: World War II and Shipborne Radar Systems
	2.1.2 Post-War Era: Emergence of Commercial Marine Radar
	2.1.3 Modern Marine Radar Systems

	2.2 Basic Radar Principles
	2.2.1 Echo Principle
	2.2.2 Radar Range
	2.2.3 Pulse Repetition Frequency and Pulse Repetition Interval
	2.2.4 Doppler Effect
	2.2.5 Target Resolution

	2.3 Components of a Radar System
	2.3.1 Transmitter
	2.3.2 Duplexer
	2.3.3 Antenna
	2.3.4 Receiver
	2.3.5 Display

	2.4 Types of Radar Systems
	2.4.1 Pulse Radar
	2.4.2 Continuous Wave Radar
	2.4.3 Frequency Modulated Continuous Wave Radar

	2.5 Radar Displays
	2.5.1 Plan Position Indicator Display
	2.5.2 A-Scope Display
	2.5.3 B-Scope Display
	2.5.4 Electronic Chart Display and Information System

	2.6 Performance Parameters and Limitations of Radar Systems
	2.6.1 Performance Parameters
	2.6.2 Limitations of Radar Systems

	3 Radar Video Distribution
	3.1 Traditional Methods
	3.2 ASTERIX CAT240 Standard
	3.3 Ethernet Multicast
	3.3.1 Network Load Calculations

	4 Software Tools
	4.1 Julia Programming Language and Frameworks
	4.2 Visual Studio Code – Code Editor
	4.3 Pluto – Reactive Notebook
	4.4 Wireshark – Network Packet Analyzer
	4.5 Colasoft Packet Player – Network Packet Player

	5 Requirements and Design
	5.1 Application Requirements
	5.2 Design

	6 Hardware Configuration
	6.1 Data Collection
	6.2 Hardware details

	7 Software Development
	7.1 Agile Software Development
	7.2 Data from Radar
	7.3 Decode CAT240 Data
	7.4 Testing During Development
	7.4.1 Manual Testing
	7.4.2 Automated Testing

	7.5 Logging
	7.6 Naming Convention and Style Guide
	7.7 Source Control
	7.8 Performance
	7.9 Deployment
	7.10 PPI

	8 CAT240 Radar Display Application
	8.1 General
	8.2 Configuration
	8.3 A-scope
	8.4 B-scope
	8.5 PPI

	9 Discussion
	10 Further Work
	11 Conclusion
	References
	Appendices
	Appendix A Master’s Thesis Description
	Appendix B Log File Example

